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Abstract—The problem of determining stresses and deformations in anisotropic, elastic, axially homogeneous
thin-walled shells subjected to equal and opposite transverse end forces, and additional moments to assure
overall equilibrium, is studied. The solution procedure is on the basis of a decomposition of stresses and strains
in terms of a portion dependent linearly on the axial coordinate and a portion independent of the axial coordinate.
The most significant aspect of the work has to do with the analysis of the effect of anisotropy of the material.
The general formulae of the theory are illustrated for a class of shells consisting of an *‘ordinary” material. Here
explicit formulae are obtained for certain types of open— as well as closed-cross-section shells.

INTRODUCTION

THISs paper considers elastic axially homogeneous anisotropic cylindrical shells subject to
transverse end forces, together with the corresponding bending moments to assure overall
equilibrium, as a problem on extension of the classical St. Venant theory of flexure. The
differential equations of equilibrium and compatibility are special cases of general linear
shell equations given by Giinther {1], and the constitutive equations are special cases of
equations given by Reissner [2]. Important characteristics of these equations are the
inclusion of moments turning about the normals to the middle surface of the shell, and
incorporation of the effect of transverse shear deformation. The effect of anisotropy on the
distribution of stresses, strains and displacements is the particular concern of this paper.

In attempting a solution of the flexure problem, we start with a formulation of the
overall equilibrium conditions for the shell acted upon by transverse end forces and the
associated equilibrium end bending moments. We conclude from these that in its simplest
form the solution of the problem should consist of two portions. The first portion, due to
the flexural bending moments, depends linearly on the axial coordinate. The second
portion due to the flexural forces is independent of the axial coordinate. Investigation of
the general system of differential equations and its associated boundary conditions reveals
that in fact the two indicated portions are all that is necessary for the solution of the prob-
lem of axially homogeneous cylindrical shell flexure, upon appeal to an appropriate
version of St. Venant’s principle.

In the following we first indicate the procedure of decomposing the problem into the
two mentioned portions. We then proceed to indicate the solution procedure for both
portions. The result for the axially dependent portion is directly given upon making use

t This report represents a chapter from the author’s Ph.D. dissertation (UCSD, May 1972, Advisor: Prof.
E. Reissner). The author's work has been supported by the Office of Naval Research, Washington. D.C.
1 Associate Professor.
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of an appropriate interpretation for the result of the problem of pure bending, stretching
and twisting, as recently presented by Reissner and Tsai [3]. The result for the axially
independent portion is then obtained as function of the quantities of the axially dependent
portion.

FUNDAMENTAL EQUATIONS

We take as curvilinear coordinates the circumferential arc length s and the axial
distance z. The coefficients of the linear arc element are o, = «, = 1, while the curvatures
are 1/R, = 1/R = dp/ds = k and 1/R,, = 1/R,, = 0. Designating stress resultants by
N, N, N.., N_,, Q,, Q, and stress couples by M, M, M_, M_,, P,, P,, with cor-
responding strain resultants ¢, y and strain couples x, 4, we have as six equilibrium equations
and six compatibility equations in accordance with Giinther [1],

Noat Nt kQ, = 0, Xons—¥szz—kdy =0, (la,b)
Q.+0Q..—kN, =0, Aog—As F ki, =0, (2a,b)

Mg, +M,.—Q, =0, Errs—Eszz— Ay = 0, (3a,b)
Nos+N..=0, Rass— %ss: = 0, (4a,b)

Mg, +M,, . .—kP,—Q, =0, Erss —Essz T kY. —4A; = 0, (5a, b)

Ps,s+Pz.z+kMsz+st'—st =0, Yz.s—)’s,z—kszs'*'x:sf"%s: =0. (635 b)

The twelve equations (la)}{6b) which involve twelve stress quantities and twelve
strain quantities are here complemented by twelve constitutive equations, written in the
form

{NSSNZZNSrNZSQSQZMSSMziMJZMZSPSPZ} = A {sssszzsngzsysyzxssxzzxszxzs;{s"{'z } ? (?)

where A4 is a 12x 12 matrix, the elements of which are given functions of the arc length
coordinates.

In addition we have twelve strain—displacement relations involving translational
displacements u,, u,, w and rotational displacements @,, @,, w. These relations are

B = U+ kW, 8y = U, 4, Ys = W+ @, —Kkug,
. (8a)
Hss = Ds,s» Ky = Przs A =W,
and
Esp = Uy s— &y = Ug+ O, Y: =W+ 9,
(8b)
ey = (pz,s-'kw’ Hes = Ps 2y j's =W, +k(pz'

Having stated the appropriate system of differential equations, we now consider the
associated boundary conditions for ends z = constant of the shell and for boundaries
s = constant of the shell.

There are altogether twelve boundary conditions for s = constant. For clarity’s sake
we consider these conditions separately for open- and closed-cross-section tubes, as
follows. For the open-cross-section tube with longitudinal boundaries s = 5, and s = s,,
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we assume that the longitudinal boundaries are traction-free. This means that we prescribe
the vanishing of the three stress resultants N, N, Q., and of the three stress couples
M, M, Pfors=s andfors =s,.

For the closed-cross-section tube, we assume that the stress measures N, N, O,
M., M, P, and the displacement measures u,, u,, w, ¢,, ®,, @ altogether are twelve
univalued quantities. Since our interest is essentially in the determination of stress and
strain quantities, we replace the six displacement univaluedness conditions by six con-
ditions expressed in terms of strain quantities. We find with the help of the strain dis-
placement relations (8a, b) that the univaluedness of displacement conditions are equivalent
to two conditions of univalued ¢,,, y, and to four strain integral relations

0= §n, s, (%)
0= é(x,sy + &X' + 7)) ds, (9b)
0= ?(x,,x — &) +7:x) ds, {9c)
0= §[ssz —(%5,Y + A X)X + (3, X — Ay )y] ds. (9d)

We now turn to the consideration of boundary conditions for sections z = constant.
We appeal to St. Venant’s principle and replace the local conditions of prescribed edge
stresses by overall equilibrium conditions as follows,

0= f N, ds (10a)
Q2= f(N =y~ M. x'+ P.y)ds, (10b)
Q.2 = f(Nxxx +M_.y' + P.x')ds, (10c)
0 = Moyt (Vo = QX — (V.o + Qo] s, (10d)
0, = [My-0xas, (10¢)
0. =[x+ Qs (10f)

In this, Q, and Q, are the prescribed overall transverse forces, Q.z and Q,z are the pre-
scribed overall bending moments, and equations (10a, d) are the statement of vanishing of
axial force and of axial torque.

We note that the six integral relations (10a) to (10f) are equivalent to four only, con-
sisting of the relations (10a, b, ¢, d). The two relations (10e, f) may be shown, by means of
an introduction of (4a) to (6a) into the z-derivatives of (10b, ¢} and by suitable integrations
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by part, upon making use of the previously indicated boundary conditions for N, Q,.
N,,, M, M, P, for s = constant, to be equivalent to equations (10b, c).

DECOMPOSITION OF STRESSES AND STRAINS

Given the form of the boundary conditions (10) and the fact that the differential
equations (1) to (6) together with (7) and the remaining boundary conditions are homo-
geneous, we realize the possibility of the following decomposition of the state of stress
and strain

(N,Q, M, P,e,y, 4, A)S, 2) = z.(N*, Q% M™* P* g* y* x* i*)(s)
+(N,Q, M, P, &, 5. %, A)(s). (11)

Introduction of (11) into (1) to (6) and (10a, b, c, d) leaves as system of equations for
the z-dependent quantities

N% +kQ¥ =0, wk —ki¥ =0, (la*, b*)
Qs —kNg =0, Afsthnt =0, (2a* b*)
MYt —-Q¥ =0, e —AF =0, (3a* b*)
N:‘z.s = 09 x:s.s = 0» (4a*s b*)
MY —kP¥—Q¥ =0, eXHhkyE—Ai¥ =0, (5a* b¥)
P:s+kM:z+N:z_N:*s=0ﬁ 7:S—k€:s+){:s—%:z=0, (6a*s b*)
and

0= f N, ds, (10a%)
Q= J‘N?zY—M?‘ZX'JrP?y’) ds, (10b*)
Q. = J(Nfzx+M:zy'+P:x’)ds, (10c*)
0= f[M;+ (NYy — OQ¥x)x—(NXX'+Q¥y)y) ds. (10d*)

At the same time we obtain as system of equations for the z-independent quantities
‘Vss.s + "Q: = - N:sv ;—‘::.s - k"{z = K:z’ (15, B)
O, —kN, = — Q¥ Ao +ka, = A* (23, b)
Mss.s—és = —M:s’ ézz,s_zz = E_:“zv (33, B)
—sz.s = _"N:z’ Hass = %:;, (4a, B)
Msz.s_kps—éz = _M:zs é:s.s+k?z_;~; =5_:;, (5a, B)

P +kM_,+N_,~N, = P* Fps— Kepg+ Ry — Ry, = 7¥, (63, b)
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and
0= fﬁu ds, (10a)
o_f( v— M+ By)ds, (10B)
0= [(Noox+ My + Pox) s (10¢)
0= f[Mzs'*'(sty -0.x N.x' +0.y'W] d;~ (10d)

It is obvious that equations (1a*) to (6b*) and (10a*, b*, c*, d*) are of exactly the same
form as equations (1a) to (6b) and (16a, b, ¢, d) in [3] except that the places of the stretching
force N, the bending moments M, and M, and of the twisting moment T in equations
(16a, b, ¢, d) in [3] are taken over by 0, Q,, Q, and 0, respectively. In addition to this, the
constitutive equations and the boundary conditions for the starred quantities are also
equivalent to the corresponding formulas in [3]. From this follows that the results for the
problem of determining the starred measures may be stipulated to be directly given in the
same form as the corresponding results for the problem of pure bending, stretching and
twisting in [3], upon replacing N, M,, M, Tby 0, Q,, Q,, 0, respectively.

We next turn to the determination of the barred quantities on the basis of equations
(13) to (6b) and (103, b, ¢, d), together with the appropriate boundary conditions and
constitutive equations.

FIRST INTEGRALS OF EQUATIONS FOR BARRED QUANTITIES

Let s, be a specified arc length coordinate. We begin by integrating equations (43, b)
in the form

S0

N, = S—J. N ds, Ry = &+f x¥ ds. (12a,b)
S0

where § and & are constants of integration.

Next, we integrate equations (1, b) and (23,b), with the help of the relation
()5 = k(),, with equations (5a*) to (6b*), and with appropriate integrations by part. In
this way, we find the important result that we can express N, %,,, 0, and Z, explicitly as

N,,

g, =

In this r, = xy'—x'y, r, = xx'+yy ;. $* = N* and a* = x¥ are given constants; and
N., N %, and %, are four additional constants of integration.

N.x Nyy’—S*r,—P:, %y, = %,V — XX +oarr +yE, (13a,b)
N

N,y +Nx'—S*r,—M%, A, = %,y + 52X —o*r,+ ek, (142, b)
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We now introduce (14a, b) into (33, b), and obtain with M and & as two {urther con-
stants of integration,

M, = ny+Nyx+M—f (M%+M¥+8*r,)ds, (15a)
So

&, = A ¥+ :‘g,x+é+J~ (e¥ +eX ~a*r,)ds. {15b)

Having the system of first integrals (12a) to (15b), we are left with_ four first-order
differential equations (53) to (6b), which involve the eight quantities M,,, P,, 0., N,,
&,5, 72, 4s and %;, and which can not in general be integrated explicitly.

BOUNDARY CONDITIONS FOR BARRED QUANTITIES

Equations (13) to (6b) are a twelfth-order system of ordinary differential equations.
We look for twelve boundary conditions. We have, in accordance with the previously
given fundamental equations, four stress integral relations (103, b, & d) and twelve
boundary conditions for s = constant. Among these, four of the boundary conditions for
s = constant are extraneous, leaving us twelve required boundary conditions. We show
this by considering separately the cases of open- and closed-cross-section tubes.

For the case of closed-cross-section tubes, we have that §*, M¥ and P¥ are univalued,
and § N* ds and §(M¥ + M2+ S*r,)ds vanish. Introducing this into (12a) to (15a) we
find that N,, N,,, 0, and M, are the measures which automatically satisfy the univalued-
ness conditions for arbitrary s. Upon excluding the conditions for these four quantities
we are left with twelve boundary conditions which consist of the four conditions of uni-
valuedness of M, P,, ¢,, and 7,, the four stress integral relations (103, b, ¢, d), and the
four barred strain integral relations in (9a, b, ¢, d), written here in the form

§ %,ds =0, (93)
é(i,syﬁ'é“x’ +7.y)ds = 0, (9b)
§(>‘c“x—-éx,y’+*,"sx')ds =0, (9¢)

§, [z — (Rgpy + AX')x + (R, x' — A,y )y]ds = 0. (9d)

We note for subsequent reference the following important transformation of equations

(10d) and (9d)

J(M,,+M,,+Sr,)ds =J(r,,f N* ds+rM2* —r, P¥| ds, (10d")
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and
5
§ (ézs + ész - &T") ds = é(rn J. X; ds— rtezv - T,,'}’: ds. (9a:)
so

Further simplifications are possible upon noting the geometrical formula 24, = ¢ r,ds.
It remains to formulate the boundary conditions for open-cross-section tubes. We let
5o = 5; and use the facts that S* = 0 throughout, and M* = P* =0 for s = s5,. The
vanishing of N,, N, @, and M for s = s, in (12a) to (15a) is then equivalent to
S=N,=N,=M=0, (16)

and we are left with the explicit results

st= _J. Nz*zds’ Nss -P:,

S (17)
0, = —Mx, M, = -—J. (MY +MZ¥)ds.

It is apparent that the boundary conditions of vanishing N,,, N, 0,, M, for s = s, are
satisfied automatically because of the boundary conditions for the starred quantities for
open tubes involving

852 S2
J. N¥ ds = f ME+M¥)ds=0 and MY =Pr'=0 for s=3s,.
Recognizing this, we are again left with twelve boundary conditions involving the four
results S=N,=N,= M =0 in (16), four conditions M, = P, =0 for s = s, and
s = s,, and the four conditions (103, b, &) and (10d").

We note in conjunction with the result (17) that the quantities N,, N, 0, and M,
together with the result that N*, N* Q¥ and MY vanish throughout, and with the de-
composition (11) provide explicit results for the actual quantities N, N, Q, and M,
for open tubes, namely

N, = —{ NZXds, N, = —P¥,
s (18)
Q, = ~-Mk, M, = —f (MY +M¥)ds.

Equations (18) show that N,, N, Q, and M are always independent of z. Furthermore,
the relation Q,+ M* = 0in (18) means an automatic satisfaction of the Kirchhofl boundary
condition Q.+ M, . = 0 for the case that the transverse shearing strain y, is stipulated
to vanish.

CALCULATION OF DISPLACEMENTS

In what follows we consider displacements of the points of the cylindrical shell surface
for the problem of flexure. As for the problems of pure stretching, bending and twisting
we are led to distinguish two types of displacements, those which translate and rotate the
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cross section of the shell as a rigid body and those which represent a distortion of the
cross section, axially and laterally. In both types, two different classes of elements are
involved. The class of “ordinary” elements which also occur for orthotropic shells and
the class of “unusual” elements which are due to the effect of non-orthotropy.

We start to calculate displacements by considering the strain displacement relations
(8a, b) which with the help of the decomposition (11) assume the form

EXZ+ B = Ug s+ KW, Erz+E,, =u,,, VR4 T = Qg+ w o kug, (19)
X;;Z-{'- Hes = Py *EZ+ Ry = D225 AFz+ Zz =W,
and
ez +E, = U, ,—w eXz 48, = U, + o, Y¥z+9, = @, + (19b)
wEZ+ R, = @, —ko, xXz+A, =@, A¥z+ A = w,+ko,.

In these %,q, %,,, 4., &,, are explicitly given by (12b) to (15b) and ¥, x%,, 1¥, e¥, with x*,
%y, %y, £* as four constants, are

* . g% s S
Hzs ar, M2z "yy KXy (20)
AF = x}y +)x, €y = HEY+uFx+e*.

We now introduce (20) together with the first strain integrals (12bj to (15b} and with
the strain differential equations (5b*, b) and (6b*, b) into the strain displacement relations
(193, b). An observation of the z-independence of all starred and barred strain components
leads to the following expressions for the six components of rotational and translational
displacement

o, = ju*z? 43z +fxss ds, (21a)
= $0e¥y —u¥x)22 +(5,) — %X +a*r)z+y, +al(x — xo)x" +(y = yo)¥']
+r, Jx,, ds—x’ J{x“x eXy +y¥xyds—y f(x,,y-i—e "+y¥v)ds, (21b)
= 362y +o5X)2E + (Y + X — a* 1)z + .= F[(x — Xo)y — (¥~ yo)¥']
—ry [ dsy [am—ety +mxrds—x [ty razc +ity)ds @1o)
and, with (s, &, v,) = (%%, eX, 792+ (F, &g, Toh
u, = $c* y+x*x+s*)z +(Z Y+ Rx + )z +HXg Yy~ yox)+ f (Egg + Ep5— Hygtn) S
+f(r,s;';+r,,y;“) ds+yf(x;‘;x-s;y’+y;"x’) ds—-xj(x,*,y+s;,x'+y;“y’) ds, (22a)
ug = —30eky +13x)2° = HRY + %X —a*r)z? +&{(x — xq)y —(y— yo)x']z

+r, fx,, ds—y J (X — &gy + ¥ X" ) ds + x' f (gsy + EseX' + 7)) ds, (22b)
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w = =30y —u*x)2* = $(R,Y — 7x' +a¥1,)22 =& (x — X)X + (y— yo)y')z

—r b, ds+x J (X — &y +px)ds+y j (o5 y + E5x" +7.y) ds. (22¢)

We note that the translational components u, and w can be resolved into two dis-
placement components v, and v, in x and y directions upon introducing

Uy = uX +wy, v, = uy —wx'. (23)
The result is given by

v, = —ba B —4E, +ary) i — &y —yolz—y f %, ds+ f(xsg +e.x' +yy)ds, (24a)

vy = —5u¥2? — MR, — oa*x)z? + Fx — x)z +x fx,s ds-—J.(us,x—sssy’+y,x’) ds. (24b)

In equations (24a, b) the terms without integral sign represent displacements with the
tube cross section translating and rotating as a rigid body and the terms with integral signs
represent the effect of distortion. Furthermore, since (s, £, y,) = (%%, e, y¥)z + (%,,. &5c» Tsh
the axially linear dependence of the effect of distortion involves the well-known effect of
transverse shear on the deflection of the beam, as stated by Timoshenko and Goodier {4]
for the problem of isotropic sheet flexure. The remaining measures, involving %, £ and ¥,,
are the unusual terms which vanish for the case of orthotropic materials. We also find
from the terms without integral sign in (24a, b) that rigid body translation and rotation
involve terms proportional to z3, z2 and z. In these, the z*-terms represent the deflection
due to flexural bending, and the z-terms represent the deflection due to axial twisting
produced by the flexural forcest [6]. We designate the z’-terms as “‘unusual” since they
represent defiections which vanish for the case of orthotropic materials.

We note in conjunction with the above observation for v, and v, that the axial dis-
placement u, also involves both ordinary and unusual terms. The z* and z-independent
terms are of course the ordinary terms representing the displacement due to bending and
warping, The term linear in z is the unusual term which is again due to anisotropy because
the coefficient of this term is, with equation (15b), the axially homogeneous strain measure
&, which comes from the constitutive coupling coefficients for anisotropic tubes.

METHOD OF SOLUTION FOR THE GENERAL CASE

Equations (12a) to (15b) express the four stress quantities N,, N, 0., M,, and the
four strain quantities %,;, %,,, 4,, £,, in terms of eight constants of integration. Equations
(53) to (6b) are four first-order differential equations allowing us to introduce four additional
constants of integration. The total of twelve constants of integration is to be determined
in terms of integrals involving starred quantities by means of the four stress integral
relations (103, b, &, d') together with the four univaluedness conditions for M;, P,, &.,, 7.
and the four strain integral relations (93, b, ¢, d’) for closed-cross-section tubes, or to-

+ For the case of orthotropic tubes, axial twisting may be eliminated by letting the flexural forces act through
the center of twist, Reissner and Tsai [5].
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gether with the eight traction conditions along the longitudinal edges, N, = N, = Q,
=M, =0fors=s5,and M, = P, = Ofors = s, and for s = s,, for open-cross-section
tubes. In what follows we wish to indicate the solution procedure for obtaining the barred
quantities for the case of the closed-cross-section shell, in such a way that the open-cross-
section shell solution is included as a special case.

Considering the solution procedure for the general case of anisotropy, we first rewrite
the constitutive equations (7) for the barred contributions in the form

—sz— ‘—zz ] r_Azz-
&ss N, N,
‘\.S QS éz.x NZS —S éZS
Mz’z = Bgy ﬁ: + B, ).)z_ ) e = By A_zz +Baa (i . (25a,b)
Ry M, M, Rz M., M.,
P, A, P A Ay P,
éxz st NSZ
| M, | | %o | | % |

In this, the eight quantities &,,, %, 4,, %,; and M, N, Q,, N, are given by the first
integrals (12) to (15).
We further write the differential equations (53, b) and (63, b) in the form

NZS FS, MSZ NSZ PZ*
0 M. -P | |o M
z — ) sz +k ) + _ + 2z ) (26a,b)
isz Pz —&y Has —7:
s élzs ?z 0 - Efs
and use this to transform (25b) into
—SS
P; M!Z Q-S P:“
Mo 1B | % Mz,
2 it PV R - B P =
&z 7z Ay — &%
N,
L %zs ]
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We now have (27) as a fourth-order system of simultaneous differential equations for
P, M., 7. and i,;. The nonhomogeneous part of this involves the known starred quantities
P*, M¥. y* &* and the given barred quantities &.., .., 1., %, M, N, O, N,,. Equations
(27) are to be solved subject to the four boundary conditions of univaluedness of P,, M ,,
7, and &, for the case of the closed-cross-section shell.

Having solved (27) we must introduce the result into the constitutive equations (25a, b)
to express, with the help of the first integrals (12a) to (15b), all quantities on the left-hand
sides as functions of the eight constants of integration S, N, N,, M, &, %, ,. & as well
as of certain functions of the starred quantities appearing explicitly and implhicitly in (27).
These expressions in turn are to be introduced into the set (104, b, ¢, d’) together with
(93, b, ¢, d'), thereby producing a system of eight simultaneous linear equations for the
determination of the eight constants §, N,, N,, M, &, %,, %,  in terms of integrals of
starred quantities.

The fourth-order system (27) is reduced to a zeroth-order system if we stipulate, in
conformity with observations in [3] that the shearing strain component j, and the moment
stress resultant P, may be set equal to zero. With this, equation (27) reduces to two simul-
taneous equations for M, and &, of the form

N
HE R N | (28a)
0 Exs M| L=
N,
. ;"ZS -

At the same time, the quantities 0, and £, are given by
Qz = M;:+M:z’ Zs = é’zs_s.:;‘ (28b)

In what follows we extend this general consideration to describe the solution pro-
cedure for the case for which the constitutive equations are taken in the form of the so-
called conventional case.

METHOD OF SOLUTION FOR CONVENTIONAL CASE

In using the words “‘conventional cases” we have in mind cases for which the con-
stitutive equations are of the form

{szNTNssM:zMTMss} = Ac{ezstsssxzszzss}’ (29)

together with
7:=7s =0, P, =P, =0, (302, b)

£5 = &, = £, Msz = Mzs = MT’ (313, b)
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and with the definitions

2ZVT = st+N:s’ 2KT = Moyt sz, {3239 b)

Having equations (30a, b) we have from the equilibrium equation (68), N, = N,
+kM 7, and from the compatibility equation (6b), %,, = %,,—key, and therewith

NT = st‘f'%km'r, i‘r = Xzs'—'z‘ké-r. (333, b)

We now use the simplified subscript notations (N,, M, &, #,) = (Nga, Mass €aas %aa)-
With this we introduce (33) into the barred part of (29) and this with the help of a suitable

transformation gives

N-Z éz MS —S 8-2 MS
M,| =B,/ %, |+B, |-N, |, ~& | =By\7 |+B,|-N,|. (34ab)
MT 22“ N-sz 2éT 22:s Ns:

where &,, %,, %,,, M, N, and N, are as in equations (123) to (15b).
In order to simplify the result for the barred quantities, we rewrite equations (123) to

(15b) in the matrix form

& _ S

g, M, —
g o M

% | =0a_ |t/ =Ny =0, _ |-/ (35a, b)
e N,

[\
Xl
«
@
2

~
<

where
0 1 y X
0;={0 0 —-x yi, (=12, (36)
i 0 0
and where
- - - 1
j (2M%+S*r,)ds f (2e¥—a*r,) ds
[ = —S*r, , fr = a*r (37a, b)
f N*ds 2_[ x¥ ds
L 50 J L 3q !
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Having equations (34) and (35), it remains to determine the eight constants of inte-
grations & %, %,, & M, N,, N and §.

Open-cross-section shells

For an open-cross-section shell, the boundary conditions of vanishing traction for
s=s, and s =5, give M =N, =N, =5 =0. The corresponding result for N,, N,
and M, is given in (17) and can, with M* = M% = M% and P* = 0, and with §* = 0,
be written as

(M,~FN = -1, = - | " (2MEON¥) ds. (38)

S

It now remains only to determine the four constants of integration & %,, %, and & in &,
%, and %,,. Evidently, this will be accomplished upon introducing (34a), (35a) and (38)
into equations (103, b, ¢, d’), written here in the matrix form

N,
52 S2
[Torm fas= [ g as )
S M sy

T

where Q7 is transpose of Q, and g, is a vector given by
g = {r,,f N¥ds+rM* 00 0}. (40a)
So

Equations (39) directly give a system of equations for & & %, and %, in terms of integrals
of starred quantities of the form

K

f "0IB,0,ds| | = f g, — OI(B. f,— B, /)] ds. @1)

Closed-cross-section shell
We now have the overall equilibrium equations (103, b, ¢, d'), with P, = 0 and

M, = M, = My, written in the form

_ 24,3
N,
. 0

gﬁQ{ M, |dse| = $g, ds 42)
M.
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and this, with (34a) and (35a, b), and with four-by-four matrices C;, becomes

a S
g M .
C, +C,| | = &[31“Q5(31f2"32f1)] ds. (43)
)—(I NX
i}’ N-)‘
At the same time, we define
g = {rj uyds—ref 00 0}, (40b)

to write the strain integral relations (93, b, ¢, d'), with 7, = 0 and ¢,, = §,; = &, into the
form

244

%, ¢
0
39Qf —5 |ds-| =§gzds. (44)
2%,

0

Introduction of %, & and &; from (34b) and (353, b) into (44) results in the relations

& S
g M
6" [+l o | = bea-01Bs s - Bus as. (45)
)—(X Nx
i)’ N-}’

Equations (43) and (45) determine the eight constants of integration in terms of integrals
of starred quantities which are implicitly given by vectors f; and g,.

We note that the system of equations (43) and (45) for closed tubes may be reduced to
a system of equations for open tubes upon appropriately interpreting the constitutive co-
efficients. Stipulating that an open-cross-section tube may be considered as if it were a
closed-cross-section tube with an open part, we set in the constitutive equations (34a, b)
the elements of B, equal to zero, and the elements of B, equal to infinite over the open
part of the closed-cross-section. When this is done, the elements of C; and of the right-
hand side of (45) are finitet and the elements of C, become infinite, requiring that the
constants S, M, N,, N, must vanish. Setting S =M = N, = N, = 0 into (43), we directly
obtain a system of equations for the remaining four constants &, &, %, and x,, of exactly
the same form as equations (41) which follows from a direct consideration.

t In view of equation (45), the statement that the elements of the right side of (45) are finite involves the con-
stitutive matrix B,, the elements of which are stipulated to be infinite over the open part. However, we have
with the relations §* = j':f Ntds = jjf 2M¥ds = 0, that the elements of f, in (37a) for open-cross-section tubes
vanish over the open part. With this, the elements of B, f, may be stipulated to be finite over the open part of
the closed-cross-section tube. The integral of QTB,f, on the right-hand side of (45) therefore has a finite value
confirming our earlier observations.
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EXPLICIT SOLUTION FOR A CLASS OF ANISOTROPIC SHELLS

In order to illustrate the nature of our general results, we consider shells with con-
stitutive equations of the form

N, N, N
82=Cz "C':_i CT’ M3=Dzzxz+Dzsxs+DzT2xT’
2z 28 zT
N N
& = C_z"*’z’i*'c T’ M, = D%, + D+ Dir2xr, (46)
sz 55 sT
N N N
2ep = —C-,—z-"l*c - +F£a M= Dszz+DTsxs+DTT2xT’
Tz Ts TT

in conjunction with
Pi=P =0, . =7=0

Msz =M, = My, £ = & = &p,

(47)

as previously done for the problems of stretching, bending and twisting [3]. With this we
consider separately solutions for the case of open-cross-section shells and for the case of
closed-cross-section shells.

For both cases we can assume that the starred (z-dependent) portion of the state of
stress and strain is given by corresponding results in {3], upon replacing (N, M, M, T)
by (0, Q,, O, 0). In what follows we determine the barred (z-independent) portion of the
stress and strain state, separately for open and for closed-cross-section shells. For the
former case we list, in particular, the results for the special case of a flat plate.

Open-cross-section shells
Since $* =M = N, = N, =§ =0, we have from equation (35b) that M,, N, and
N,, are explicitly given by

M,= - f 2M%ds, N,=0, N_=-— f N*ds. (48)

We next use ‘equations (46) together with the relations N = N, +%kM; and
Ry = %,,—+kér to express N,, M, and M in terms of ., %,, %, and of the quantities
given by (48).

After some transformations, the barred portion of equations (46) leads to relations
which, with a simplification basic on the stipulations D = O(Eh*), C = O(Eh), and within
the range of applicability of shell theory k?h® « I, |k, « ix,J, and max(lx,], %))
« lke,|/k*h?, in accordance with [3], are of the form

DrDs\ . D;D.\_ .Dr [*
M, = DTT(1---—D:‘TD:S)2KZS+DT,(1—DZZD:)X,—zD—:SL M%ds, (49a)
— D,.D,, DD, D, f . .
=D 128" Nait.1 a1 [ 7~ k-4 X 49b
M, D,‘(l B.D.. 7,4+ D,r|1 5D, 2%, 2Dss ) M*ds (49b)

and

N,=C.é+ Car f N¥ds. (49¢)
CZT 83
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In this %, % and §, are given by (35a), rewritten here in the form

s
E, = E+ X y+ >‘¢yx—+-J~ (2e%—a*r,) ds,
51

)
5 e Sy v * = — 5 %
%, = %) — %X +a*r, xn—a-}--" x¥ ds.
5y

Equations (49a, b, ¢) together with (50) in turn are introduced into (103, b, ¢, d') to form
a system of four simultaneous equations for &, &, %, and %,. We list here, in particular, the

system of equations for a flat plate, for which s =x, X =1, y =y =0, and 5, = —b,
s, = b,
b b b C x x
E:J. C., dx+>‘<,j C,.,xdx = ——f ( "J N* dx+C,zJ 2e% dx) dx, (51a)
-b ~b -5\ Cord - -b
b b b C x X
sj C,,x d)c+:‘<).J~ C,.x*dx = -j ( = N} dx+C::J 2e¥dx|xdx, (51b)
-b ~-b -b CzT - -b

b
zj (D zs ")dx 2[ ( D"D‘T)dx
-b
b D, X D
B e e IR
-b D -5

- 5 LM;dx] dx, (5lc)
b D..D
4aj ( IT— Dr,D ’T) dx —-2%, J b(Dh———TI;—E) dx

S5

b D x D
=J [xM;“—4(DTT-——’I—D—T3)J x,*dx—-2(DTz— T‘D")a*x
-b D -b Dss

53

o*x+2

D X
+4~D—“J‘ M’;dx} dx. (51d)
ss v—b

We note that the constants £ and %, depend only on the stretching stress resultant
N¥ and the shearing strain resultant ¢¥, while %, and & depend on the twisting and bending
stress couples M¥, M?¥ and the twisting and bending strain couples x*, «*.

Having obtained & %,, %, and &, it becomes a simple matter to determine ., %, and
%, from (50) and M, M, and N, from (49). The remaining quantities &;, & and %, which
incorporate the same simplification as (49a, b, ¢) are then obtained from -

— 2— X
%, = _.’Zs.a’&:i’_ﬂ_"zs_,‘_f IM* dx, (52a)
Dss ssv —b
C 1 C.C *
5 oam o2Ta 1~ sT > zz J- N*dx. 2
5 Cszez CST( CS:CZT) P O (5 b)
C

. 1 CrC. x
2. = *’g_-_——(l———r———'f)J N¥dx. (52¢)
T : CTzCzT ~b
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Closed-cross-section shells

In order to simplify the result for stresses and strains for closed-cross-section shells,
we start with the same stipulations as in [3] that we may assume M, M, and N, negligible
in the constitutive equations (46). With this, we have now as effective constitutive equations

1
M, =0, My =0, MS=EMS, (53a)
and
C..
Nz = C:zez__C:st*
c 1 C..Cor
=== I ——==2|N., 53b
SS Cszsz+CsT( CszCzT) * ( 3 )
C 1 C,.C
2ep = g +— (1 -2 TN
T cr,“cn( Cnczr) =

We note that by letting M, = 0, the possibility of treating the open-cross-section shell as
a limiting case of the closed-cross-section shell is precluded. '

In the following, we determine barred stresses and strains in terms of starred stresses
and strains. We first have the barred portion of M, ¢, and N, as in equations (35a, b)
with M¥ = §* = 0,1 written here as

M,=M+Ny+Nx N, = s—J' N*ds.
) S0 (54)
g, =E+Ry+Rx+ f (2e¥—a*r,) ds.

We now introduce equations (53a, b) together with (54) into the overall equilibrium
equations (103, b, & d’) and the strain integral relations (93, b, ¢, d') to form, as a special
case of the system (43) and (45), a system of eight equations for the constants M, N, N,
S, & #,, %, and & This system of equations which with coordinate axes chosen so as to make

§ C..(x, y, xy)ds = (0, 0, 0) appears in the form
g § C..ds-S§ § (C../C.p)ds = — ff) [f (2eX—a*r,) ds+ J. N? ds)/CzT:| C,.ds.  (55a)

So

7§ Cr? ds =3 §(C/C.rlyds

= —§[J. (28'7"-—1*r,,)ds+(f N} dS)/CzT:lszyds, (55b)

2y § C..x*ds—§ § (C:,/C.p)x ds

= _(£ U“ (2ex —a*r,)ds+ (J" N* ds)/CzT] C..xds, (55¢)

24,3 = 36( f N* ds) . ds, (55d)

+8*(= N%) = 0 is a direct consequence of equation (48d’} in [3], with T set equal to zero,
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and
M§®+N S#)yderN ?Y—(E-O, (56a)
_ [yds _ quzds _§xyds § --CT x' ds
—_— N
Mi& D +Nx., D * Y S :T CST
+84(C./Cov ds +3, #(c,z/csgx'y ds-+ 7, G(C/C.opr ds
1 C,.C, C..(® )
= §{a—r—(l C C,:) L’ N* ds«z_:J:OQai‘,i—»a*r,,) ds} X' ds, {56b)
5 — C.. ' d
Mé‘cds xvds+Ny§x ds—§§; 1— :Cr|y ds
C’: CST

—5 § (C../C.)y ds— %, §> (Coo/Cooly'y ds—3, #; (C../C.o)xy ds

- 1 " j‘ 5ok
= §{C5r( Cs-C-T)J‘ N¥ds— C. so( 2er—x rn)ds}) ds, (56¢)

C CTT) ds
TZC:T CTT

-24 1+5§>(C../CT.)ds+,c ?(C JCrvds+3, iﬁ(c JCra)x ds+S<§(

s

[ 1 C..C rr) C.. [ } .
=@Q<r, b w¥ds—ref+—oyA1l—- N¥ds——= J e —a*ryds; ds. (56d)
i} { j CTT( CrCer Tz Vs T

It is apparent that equation (55d) gives § explicitly in term of N*, Introducing this
result into (55a, b, ¢) we obtain &, %, and %,. We then use equation (56d) to express X in
terms of x¥, e¥, ¢}, «* and N*. With the determined results for §, &, %, and %,, equations
(56a, b, ¢) then become three equations for M, N and N,.

Having determined the eight constants, it becomes a simple matter to obtain the
barred measures of stress and strain upon making use of the first integrals, (54) together
with %, %,, and N, in (35a, b), and of the constitutive equations (53a, b). Among these
results, we are particularly interested in the distribution of the shearing stress resultant
N, (=N, = N, because N*. = M, = 0) since an explicit result for this has, so far as the
author knows, not yet been given.

We first introduce S from (55d) into (54) to obtain

1 5
stxﬂ—;§(£o N* ds)rnds—J N¥*ds. (57)

sQ

Here the initial arc length s, in (57) is arbitrary because N_ is independent of it.

We now rewrite equation (57) in more explicit form, upon making use of N¥ = C_.¢f
= C(e*+x¥y+x¥x)and of &* = 0, x*§ C,.y*ds = Q,and x* § C_.x* ds = Q,.+ By doing
this, the result, with a suitable integration by part and with Q, set equal to zero for

t The values of &*, x¥ and x} are obtained from equations (48a’, ¥, ¢} in (3] with N, M, and M, replaced
by 0,Q,and Q,.
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simplicity’s sake, appears in the form

. . ds
N, = — fc-_Q}}Z ds{3€ G : ds)C:zy ds+ f C..y ds}. (58)

It is of interest to note that N, in equation (58) depends only on the constitutive coefficient
C.. even though a system of anisotropic constitutive equations (53a, b) has been used.

Uniform closed-cross-section circular cylindrical shell

We set x = asing, y = —acos ¢ and ds = adg, and replace (N, M,, M, T) in [3]
by (0, @,,0,0). In this way we obtain directly from equations (48a’,b’, ¢, d’) and (51a, b,
¢, d)in [3],

et = X: =o* = 0, %: = ;CTQX;‘.;, (593)
=Nf=S§*=0 Nt= ;t% C?az' (59b)

Equations (59a, b) together with equations (47¢') and (49a’, b, ¢) in [3] give for stress
quantities

g, D D
N =0, NEN MY = =F, -, — | 60
52 ( z (3 s) ﬂ03 Cuaz Csza) ( )
and for strain quantities
o.{1 1
® e % *y oo =Y I
x:s Os ('{:.X\ ) Tlu“( zza CS:)}’
g, {1 1 1 ©D)
* ok _— ‘__)_ e e b
(e¥,ef, 2e7) = (C,, c CT-)‘

We now make use of equations (53) to (56) to write the z- mdependent measures of
stress and strain as follows. The constants &, x,, %,, @, M,N.,N , and S are, with s, set
equal to zero, given by

CT CzT
0. D (62)
M=N.=§8=0, y—;;CsTa
Stress resultants and couples are
— - Q,x — M, gx D
7 e . ) R e — = .2 — 63
]\': 0= st TCCI Ns a nal CsTa2 ( )
Strain resultants and couples are
i 1 1
(6..8,,287) = 23’— T T
C CsT CTT
(64)

s = o= O 1 1 1
{}:Z’XS’ Azs} B n03 CTZ+C:T,CST’ sz *
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With (60), (61), (63) and (64), we have as expressions for measures of stress and strain

;9 Q
N, = n—a’3yz, N,, n—ayzx,
M Q, D C (©
N = ——5 = _ %y | yz+ax =%,
: a na’ Csza“(y +atCsT)
and
fo= D2z ax (= Dz ax
: naJ sz CzT ’ ’ naJ Csz CsT '
Q,{yz ax Q,({yz ax ax
Qe = =L +—1, == ==, 66
°r na3 CT: CTT % n:a‘ sz CTz CzT ( )
L Qm ey 0 x
* ma*\C, C,) = na® C,,

The results for N, and N, are of exactly the same form as those following from ele-
mentary considerations. The quantities N, and M, are of negligibie magnltude the same
as for the problem considered in [3].

The quantities ¢, ¢, %, and %, consist of two portions, the portion linear on z and the
portion independent of z. The latter portion is due to the effect of anisotropy. When
z/a » 1, the effect of anisotropy on ¢, ¢, x, and », becomes unimportant. The strain re-
sultant ¢; also consists of two portions. But in ¢, the anisotropic effect which occurs in
the portion depending on z dominates. The strain couple x,, comes out independent of
anisotropic constitutive coefficients.

The results which are probably of greatest interest for the present case are expressions
for the displacement components u,, v, and v,. With x, and y, set equal to zero and with
u,,v,andv,assumedtovanishaty = z = 0,weobtainfromequations(22a)and (24a,b),

LT Oy o 0x 0

z
2 na*C,, nazCzT na

1
; 7
Cn+ C) ¥ (67a)

2 2

Lo Z Qy | 1 Q Xy ny

= T3\ Gt L) T irac, T maicy (675)
2 Q, QX | Oy

=% na’C,, na3C5,+7ta2CsT' (67¢)

Equation (67a) indicates that the effect of anisotropy on u, is not so important as the
first term when z/a is large. Equation (67b) shows that the leading term of v, depends on
z? and is due to anisotropy. Comparing this term with the second term we find that the
lateral contraction due to the constitutive coefficient C,, becomes of secondary importance
when z/a » 1. Equation (67¢) indicates that the effect of anisotropy on v, represents a
distortion which is unimportant insofar as the displacements for the entire shell are con-
cerned.

In order to see the effects of C;r and C,, on v, we first observe equation (67a). Since
the last term in (67a) represents a rigid body displacement, we may rotate the entire beam
about the x-axis so as to make u, = 0 at the plane z = 0. When this has been done, du,/dy
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at z = 0 becomes zero and consequently v, is increased by a quantity Q,z(1/Crr+1/C,,)/na.

We then obtain v,, with the distortion term in (67c) discarded and with a®>—x? = )7, as
3 2 . 2

Z Qy (1_6a C-z 6} zz).

v, = —— -

y 6 na*C,,

22 CTT_ 2 Ce
In the parenthesis of equation (68), the second term represents the well-known effect of
shearing force. The last term represents the effect of lateral contraction.

The displacement component v,, with the distortion term discarded, is listed in the
form

(68)

__ 29

Uy = — —%

2 na®

1 1 Xy C-Tzcjo
—_— -1 69
CTz M CzT) [ za Csz(CTz + C:T) ( )

Remarkably, the effect of anisotropy on v, is large in comparison with the effect of shearing
force on v, yet is small in comparison with the first term in (68) when z/a is large.
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AbcTpakT—Mccnenyerca 3anava ofnpeaesieHUa HanpsXeHWd M nedopmaLuii B aHM3OTPHNHLIX, YNPYTHX.
oce60 OAHOPOAHBIX, TOHKOCTEHHBIX OBONO4KAX, NOABEPKEHHbIX NEACTBHbI PABHBIX H NPOTHBOMNONOXHO
HaNpaBNCHHbIX MOMNEPEYHbIX KPAeBbIX YCHAHH N 106aBOYHBIX MOMERTOB, 418 ObecneyeHHs NOTHOIO PaBHO-
BECHA. METOn pellieHis OCHOBAH Ha Pa3/IOKEHHK HanpsikeHui ¥ nedopMaumil B uneHbl YACTHYHO 3aBHCKMbIE
JIHHERHO OT OCeBOM KOOPAWHATHI H MACTUYHO HE3ABUCHMbIE OT OCeBOM xoopauHaThi. HaliGonee 3HauuTen-
BHBIM acnNeKTOM paboThl ABAAETCA oOyxkncHue 3(pdexTa aHU30TpONHKM MaTepHana. JaroTca KILTFOCTpalnu
obwux dopMyn Teopuu Ins knacca obONOMEK, M3ITOTOBNCHHBIX M3 ‘‘OObLIKHOBEHHOro’® Martepuana. Jdns
3TOTO Cny4af, MONyYarTcs GOpMybl B ABHOR GopMe, KOTOpbIE KacaloTCs HEKOTOPbIX THNOB obonouek,
KaK OTKPhITOTO TaK M 3aMKHYTOIrO NONEPEYHOro CEYeHus .



